Task 77378

Name minerva-7bI-q6-llama-inference_176166_1739055910.676393_24697_1
Workunit 71068
Created 14 Feb 2025, 4:47:29 UTC
Sent 14 Feb 2025, 21:49:11 UTC
Report deadline 21 Feb 2025, 21:49:11 UTC
Received 14 Feb 2025, 22:00:42 UTC
Server state Over
Outcome Success
Client state Done
Exit status 0 (0x00000000)
Computer ID 9
Run time 11 min 4 sec
CPU time 44 min 5 sec
Validate state Valid
Credit 116.64
Device peak FLOPS 41.95 GFLOPS
Application version Minerva 7B Instruct Q6 inference via LLama.cpp v4.00 (mt)
x86_64-pc-linux-gnu
Peak working set size 5.73 GB
Peak swap size 5.82 GB
Peak disk usage 46.75 KB

Stderr output

<core_client_version>8.1.0</core_client_version>
<![CDATA[
<stderr_txt>
llama_model_loader: loaded meta data with 51 key-value pairs and 291 tensors from ../../projects/boinc.llmentor.org_LLMentorGrid/minerva-7b-instruct-v1.0-q6_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Minerva 7b Inst
llama_model_loader: - kv   3:                           general.finetune str              = inst
llama_model_loader: - kv   4:                           general.basename str              = minerva
llama_model_loader: - kv   5:                         general.size_label str              = 7B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                   general.base_model.count u32              = 1
llama_model_loader: - kv   8:                  general.base_model.0.name str              = Minerva 7B Base v1.0
llama_model_loader: - kv   9:               general.base_model.0.version str              = v1.0
llama_model_loader: - kv  10:          general.base_model.0.organization str              = Sapienzanlp
llama_model_loader: - kv  11:              general.base_model.0.repo_url str              = https://huggingface.co/sapienzanlp/Mi...
llama_model_loader: - kv  12:                      general.dataset.count u32              = 3
llama_model_loader: - kv  13:                     general.dataset.0.name str              = Ultrafeedback_Binarized
llama_model_loader: - kv  14:             general.dataset.0.organization str              = HuggingFaceH4
llama_model_loader: - kv  15:                 general.dataset.0.repo_url str              = https://huggingface.co/HuggingFaceH4/...
llama_model_loader: - kv  16:                     general.dataset.1.name str              = ALERT
llama_model_loader: - kv  17:             general.dataset.1.organization str              = Babelscape
llama_model_loader: - kv  18:                 general.dataset.1.repo_url str              = https://huggingface.co/Babelscape/ALERT
llama_model_loader: - kv  19:                     general.dataset.2.name str              = Evol Dpo Ita
llama_model_loader: - kv  20:             general.dataset.2.organization str              = Efederici
llama_model_loader: - kv  21:                 general.dataset.2.repo_url str              = https://huggingface.co/efederici/evol...
llama_model_loader: - kv  22:                               general.tags arr[str,3]       = ["sft", "dpo", "text-generation"]
llama_model_loader: - kv  23:                          general.languages arr[str,2]       = ["it", "en"]
llama_model_loader: - kv  24:                          llama.block_count u32              = 32
llama_model_loader: - kv  25:                       llama.context_length u32              = 4096
llama_model_loader: - kv  26:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  27:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  28:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  29:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  30:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  31:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  32:                 llama.attention.key_length u32              = 128
llama_model_loader: - kv  33:               llama.attention.value_length u32              = 128
llama_model_loader: - kv  34:                          general.file_type u32              = 18
llama_model_loader: - kv  35:                           llama.vocab_size u32              = 51264
llama_model_loader: - kv  36:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  37:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  38:                         tokenizer.ggml.pre str              = minerva-7b
llama_model_loader: - kv  39:                      tokenizer.ggml.tokens arr[str,51264]   = ["<s>", "</s>", "<unk>", "!", "\"", "...
llama_model_loader: - kv  40:                  tokenizer.ggml.token_type arr[i32,51264]   = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  41:                      tokenizer.ggml.merges arr[str,50955]   = ["&#196;&#160; a", "i n", "&#196;&#160; &#196;&#160;", "e r", "o n"...
llama_model_loader: - kv  42:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  43:                tokenizer.ggml.eos_token_id u32              = 51202
llama_model_loader: - kv  44:            tokenizer.ggml.unknown_token_id u32              = 2
llama_model_loader: - kv  45:            tokenizer.ggml.padding_token_id u32              = 51202
llama_model_loader: - kv  46:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  47:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  48:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv  49:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  50:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q6_K:  226 tensors
llm_load_vocab: control token:  51201 '<|end_header_id|>' is not marked as EOG
llm_load_vocab: control token:  51200 '<|start_header_id|>' is not marked as EOG
llm_load_vocab: control token:      0 '<s>' is not marked as EOG
llm_load_vocab: control token:      1 '</s>' is not marked as EOG
llm_load_vocab: control token:      2 '<unk>' is not marked as EOG
llm_load_vocab: special tokens cache size = 6
llm_load_vocab: token to piece cache size = 0.3264 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 51264
llm_load_print_meta: n_merges         = 50955
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q6_K
llm_load_print_meta: model params     = 7.40 B
llm_load_print_meta: model size       = 5.65 GiB (6.56 BPW) 
llm_load_print_meta: general.name     = Minerva 7b Inst
llm_load_print_meta: BOS token        = 0 '<s>'
llm_load_print_meta: EOS token        = 51202 '<|eot_id|>'
llm_load_print_meta: EOT token        = 51202 '<|eot_id|>'
llm_load_print_meta: UNK token        = 2 '<unk>'
llm_load_print_meta: PAD token        = 51202 '<|eot_id|>'
llm_load_print_meta: LF token         = 129 '&#195;&#132;'
llm_load_print_meta: EOG token        = 51202 '<|eot_id|>'
llm_load_print_meta: max token length = 128
llm_load_tensors: tensor 'token_embd.weight' (q6_K) (and 290 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead
llm_load_tensors:   CPU_Mapped model buffer size =  5789.55 MiB
.................................................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 96
llama_new_context_with_model: n_ctx_per_seq = 96
llama_new_context_with_model: n_batch       = 58
llama_new_context_with_model: n_ubatch      = 58
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (96) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 96, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    12.00 MiB
llama_new_context_with_model: KV self size  =   12.00 MiB, K (f16):    6.00 MiB, V (f16):    6.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =    12.25 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 192
llama_new_context_with_model: n_ctx_per_seq = 192
llama_new_context_with_model: n_batch       = 143
llama_new_context_with_model: n_ubatch      = 143
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (192) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 192, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    24.00 MiB
llama_new_context_with_model: KV self size  =   24.00 MiB, K (f16):   12.00 MiB, V (f16):   12.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =    30.20 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 160
llama_new_context_with_model: n_ctx_per_seq = 160
llama_new_context_with_model: n_batch       = 102
llama_new_context_with_model: n_ubatch      = 102
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (160) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 160, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    20.00 MiB
llama_new_context_with_model: KV self size  =   20.00 MiB, K (f16):   10.00 MiB, V (f16):   10.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =    21.54 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 128
llama_new_context_with_model: n_ctx_per_seq = 128
llama_new_context_with_model: n_batch       = 79
llama_new_context_with_model: n_ubatch      = 79
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (128) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 128, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    16.00 MiB
llama_new_context_with_model: KV self size  =   16.00 MiB, K (f16):    8.00 MiB, V (f16):    8.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =    16.68 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 128
llama_new_context_with_model: n_ctx_per_seq = 128
llama_new_context_with_model: n_batch       = 86
llama_new_context_with_model: n_ubatch      = 86
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (128) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 128, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    16.00 MiB
llama_new_context_with_model: KV self size  =   16.00 MiB, K (f16):    8.00 MiB, V (f16):    8.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =    18.16 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
Processed 5 items
Tokens per second: 1.65
2025-02-14 23:02:24 (3194): called boinc_finish(0)

</stderr_txt>
]]>


©2025 Matteo Rinaldi