Task 77717

Name minerva-7bI-q6-llama-inference_176166_1739055910.676393_6071_2
Workunit 52442
Created 14 Feb 2025, 20:27:24 UTC
Sent 14 Feb 2025, 22:03:38 UTC
Report deadline 21 Feb 2025, 22:03:38 UTC
Received 15 Feb 2025, 0:27:17 UTC
Server state Over
Outcome Success
Client state Done
Exit status 0 (0x00000000)
Computer ID 94
Run time 8 min 20 sec
CPU time 32 min 46 sec
Validate state Valid
Credit 69.78
Device peak FLOPS 49.45 GFLOPS
Application version Minerva 7B Instruct Q6 inference via LLama.cpp v4.00 (mt)
x86_64-pc-linux-gnu
Peak working set size 5.72 GB
Peak swap size 5.80 GB
Peak disk usage 45.88 KB

Stderr output

<core_client_version>7.24.1</core_client_version>
<![CDATA[
<stderr_txt>
llama_model_loader: loaded meta data with 51 key-value pairs and 291 tensors from ../../projects/boinc.llmentor.org_LLMentorGrid/minerva-7b-instruct-v1.0-q6_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Minerva 7b Inst
llama_model_loader: - kv   3:                           general.finetune str              = inst
llama_model_loader: - kv   4:                           general.basename str              = minerva
llama_model_loader: - kv   5:                         general.size_label str              = 7B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                   general.base_model.count u32              = 1
llama_model_loader: - kv   8:                  general.base_model.0.name str              = Minerva 7B Base v1.0
llama_model_loader: - kv   9:               general.base_model.0.version str              = v1.0
llama_model_loader: - kv  10:          general.base_model.0.organization str              = Sapienzanlp
llama_model_loader: - kv  11:              general.base_model.0.repo_url str              = https://huggingface.co/sapienzanlp/Mi...
llama_model_loader: - kv  12:                      general.dataset.count u32              = 3
llama_model_loader: - kv  13:                     general.dataset.0.name str              = Ultrafeedback_Binarized
llama_model_loader: - kv  14:             general.dataset.0.organization str              = HuggingFaceH4
llama_model_loader: - kv  15:                 general.dataset.0.repo_url str              = https://huggingface.co/HuggingFaceH4/...
llama_model_loader: - kv  16:                     general.dataset.1.name str              = ALERT
llama_model_loader: - kv  17:             general.dataset.1.organization str              = Babelscape
llama_model_loader: - kv  18:                 general.dataset.1.repo_url str              = https://huggingface.co/Babelscape/ALERT
llama_model_loader: - kv  19:                     general.dataset.2.name str              = Evol Dpo Ita
llama_model_loader: - kv  20:             general.dataset.2.organization str              = Efederici
llama_model_loader: - kv  21:                 general.dataset.2.repo_url str              = https://huggingface.co/efederici/evol...
llama_model_loader: - kv  22:                               general.tags arr[str,3]       = ["sft", "dpo", "text-generation"]
llama_model_loader: - kv  23:                          general.languages arr[str,2]       = ["it", "en"]
llama_model_loader: - kv  24:                          llama.block_count u32              = 32
llama_model_loader: - kv  25:                       llama.context_length u32              = 4096
llama_model_loader: - kv  26:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  27:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  28:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  29:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  30:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  31:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  32:                 llama.attention.key_length u32              = 128
llama_model_loader: - kv  33:               llama.attention.value_length u32              = 128
llama_model_loader: - kv  34:                          general.file_type u32              = 18
llama_model_loader: - kv  35:                           llama.vocab_size u32              = 51264
llama_model_loader: - kv  36:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  37:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  38:                         tokenizer.ggml.pre str              = minerva-7b
llama_model_loader: - kv  39:                      tokenizer.ggml.tokens arr[str,51264]   = ["<s>", "</s>", "<unk>", "!", "\"", "...
llama_model_loader: - kv  40:                  tokenizer.ggml.token_type arr[i32,51264]   = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  41:                      tokenizer.ggml.merges arr[str,50955]   = ["&#196;&#160; a", "i n", "&#196;&#160; &#196;&#160;", "e r", "o n"...
llama_model_loader: - kv  42:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  43:                tokenizer.ggml.eos_token_id u32              = 51202
llama_model_loader: - kv  44:            tokenizer.ggml.unknown_token_id u32              = 2
llama_model_loader: - kv  45:            tokenizer.ggml.padding_token_id u32              = 51202
llama_model_loader: - kv  46:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  47:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  48:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv  49:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  50:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q6_K:  226 tensors
llm_load_vocab: control token:  51201 '<|end_header_id|>' is not marked as EOG
llm_load_vocab: control token:  51200 '<|start_header_id|>' is not marked as EOG
llm_load_vocab: control token:      0 '<s>' is not marked as EOG
llm_load_vocab: control token:      1 '</s>' is not marked as EOG
llm_load_vocab: control token:      2 '<unk>' is not marked as EOG
llm_load_vocab: special tokens cache size = 6
llm_load_vocab: token to piece cache size = 0.3264 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 51264
llm_load_print_meta: n_merges         = 50955
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q6_K
llm_load_print_meta: model params     = 7.40 B
llm_load_print_meta: model size       = 5.65 GiB (6.56 BPW) 
llm_load_print_meta: general.name     = Minerva 7b Inst
llm_load_print_meta: BOS token        = 0 '<s>'
llm_load_print_meta: EOS token        = 51202 '<|eot_id|>'
llm_load_print_meta: EOT token        = 51202 '<|eot_id|>'
llm_load_print_meta: UNK token        = 2 '<unk>'
llm_load_print_meta: PAD token        = 51202 '<|eot_id|>'
llm_load_print_meta: LF token         = 129 '&#195;&#132;'
llm_load_print_meta: EOG token        = 51202 '<|eot_id|>'
llm_load_print_meta: max token length = 128
llm_load_tensors: tensor 'token_embd.weight' (q6_K) (and 290 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead
llm_load_tensors:   CPU_Mapped model buffer size =  5789.55 MiB
.................................................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 64
llama_new_context_with_model: n_ctx_per_seq = 64
llama_new_context_with_model: n_batch       = 32
llama_new_context_with_model: n_ubatch      = 32
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (64) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 64, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =     8.00 MiB
llama_new_context_with_model: KV self size  =    8.00 MiB, K (f16):    4.00 MiB, V (f16):    4.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =     6.76 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 96
llama_new_context_with_model: n_ctx_per_seq = 96
llama_new_context_with_model: n_batch       = 36
llama_new_context_with_model: n_ubatch      = 36
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (96) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 96, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    12.00 MiB
llama_new_context_with_model: KV self size  =   12.00 MiB, K (f16):    6.00 MiB, V (f16):    6.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =     7.60 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 128
llama_new_context_with_model: n_ctx_per_seq = 128
llama_new_context_with_model: n_batch       = 83
llama_new_context_with_model: n_ubatch      = 83
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (128) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 128, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    16.00 MiB
llama_new_context_with_model: KV self size  =   16.00 MiB, K (f16):    8.00 MiB, V (f16):    8.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =    17.53 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_batch is less than GGML_KQ_MASK_PAD - increasing to 32
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 64
llama_new_context_with_model: n_ctx_per_seq = 64
llama_new_context_with_model: n_batch       = 32
llama_new_context_with_model: n_ubatch      = 32
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (64) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 64, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =     8.00 MiB
llama_new_context_with_model: KV self size  =    8.00 MiB, K (f16):    4.00 MiB, V (f16):    4.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =     6.76 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 96
llama_new_context_with_model: n_ctx_per_seq = 96
llama_new_context_with_model: n_batch       = 44
llama_new_context_with_model: n_ubatch      = 44
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 10000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (96) < n_ctx_train (4096) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 96, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 32
llama_kv_cache_init: layer 0: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 1: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 2: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 3: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 4: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 5: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 6: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 7: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 8: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 9: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 10: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 11: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 12: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 13: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 14: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 15: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 16: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 17: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 18: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 19: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 20: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 21: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 22: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 23: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 24: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 25: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 26: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 27: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 28: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 29: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 30: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init: layer 31: n_embd_k_gqa = 1024, n_embd_v_gqa = 1024
llama_kv_cache_init:        CPU KV buffer size =    12.00 MiB
llama_new_context_with_model: KV self size  =   12.00 MiB, K (f16):    6.00 MiB, V (f16):    6.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.20 MiB
llama_new_context_with_model:        CPU compute buffer size =     9.29 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 1
Processed 5 items
Tokens per second: 1.45
2025-02-15 01:27:09 (262961): called boinc_finish(0)

</stderr_txt>
]]>


©2025 Matteo Rinaldi